Country: Austria


Get free physical or remote access
to this facility and its virtual services via the
ERIGrid 2.0 Lab Access Programme.
Submit Testing/Consulting Request

Description: The Austrian Institute of Technology (AIT) is Austria’s largest research and technology organisation. As a national and international network node at the interface of science and industry, AIT performs contract research, licensing IPR or launches spin-offs for industry partners as well as provides input in the form of coordinating foresight processes, performing studies and evaluations and developing concepts and programmes with regard to infrastructure and technology policy decisions for public institutions.

The main research areas of AIT are energy, mobility systems, low-emission transport, health & bio resources, digital safety & security, vision, automation & control and technology experience, all paired with competence in the area of innovation systems & policy. Among their facilities in the field of smart grids is the Smartest (Smart Electricity Systems and Technology Services) laboratory analysing interactions between components and the grid under realistic conditions.


Smart Electricity Systems and Technologies Laboratory (SmartEST)

Description: The AIT SmartEST, located in Vienna, Austria, provides a multifunctional research, validation and testing infrastructure allowing the testing of single devices as well as analysis of the interactions among multiple power system components – especially Distributed Energy Resource (DER)-based inverter systems – and the power grid under realistic, nearly real-world situations. The laboratory includes three configurable three-phase low-voltage grids; a high-bandwidth, programmable power grid simulator; several Photovoltaic (PV) array simulators; and an environmental test chamber for emulating various environmental conditions. This permits the validation and testing of DER-based inverter systems at full power under extreme temperature and humidity conditions and the investigation of their interactions under various power grid conditions. The facility is capable of testing inverters, storage units, grid controllers, and Combined Heat and Power (CHP) units as well as charging stations/supply equipment for electric vehicles in the power range from a few kVA up to 1 MVA.
Designed as a pure low-voltage research and testing environment, all AC buses are rated for operation at voltages of up to 480 V (line to line). The laboratory itself is supplied from the local 20 kV medium-voltage power grid via two independent medium- and low-voltage (MV/LV) transformers. The test facility has been used for comprehensive performance testing of DER equipment as well as qualification testing to national and international grid codes and standards based on the extensive range of accreditations held by AIT. Research on procedures for advanced interoperability testing of single as well as multiple DER units under different grid control schemes supports the integration of DERs into a future smart grid through standardized communication and coordination among generators, consumers, and storage units.
The lab is in operation since 2013.
Technical specifications (PDF)

AIT SmartEST lab also includes a Data Analytics Lab with a 24 node / 48 CPU / 288 core parallel cluster infrastructure, including 3TB RAM and 100TB distributed storage systems. The scalable network filesystem is based on GlusterFS, a large distributed storage solution for data analytics and other bandwidth intensive tasks.

Static Equipment

Adjustable loads for active and reactive power


  • Freely adjustable RLC loads up to 1 MW, 1 MVAr (cap. and ind.)
  • Individual control of any RLC components for anti-islanding tests

DC Sources


  • 5 independent dynamic PV-Array Simulators: 1500 V, 1500 A, 960 kW
  • 1 bidirectional DC source/ESS emulator: 800 V, 1000 A, 700 kW
  • 3 independent dynamic PV-Array Simulators: 1000 V, 96 A, 36 kW
  • 2 independent dynamic PV-Array Simulators: 1000 V, 40 A, 32 kW

Environmental simulation

  • 2 temperature and humidity test chambers for performance and accelerated lifetime testing
  • Full power operation of equipment under test inside chamber
  • Max. footprint of equipment under test: 3,60 x 2,60 x 2,80 m LxWxH
  • Temperature range -40°C to +120°CHumidity range: 10 % to 98 % r.H.

Grid Simulaton

  • 2 independent high bandwidth 4-Quadrant Grid Simulation Units: 0 to 480 V 3-phase, 800 kVA
  • High bandwidth Linear 4-Quadrant Grid Simulation Unit: 0 to 470 V 3-phase, 30 kVA
  • 3 independent laboratory grids, which can be operated in grounded/isolated mode
  • 3-phase balanced or unbalanced operation
  • Capabilities to perform LVRT (Low Voltage Ride Through) and FRT (Fault Ride Through) testing up to 1 MVA according to IEC 61400-21 (mobile equipment)

Line impedance emulation

  • Adjustable line impedances for various LV network topologies: meshed, radial or ring network configuration

SCADA and Automation System

  • Highly customizable laboratory automation system
  • Remote control possibilities of laboratory components
Mobile Equipment
LVRT/FRT test generator


  • LVRT/FRT test generator up to 1 MVA (according to IEC 61400-21)
DAQ and Measurement


  • Multiple high precision Power Analyzers with high acquisition rate
  • Simultaneous sampling of asynchronous multi-domain data input
Power Service Center

Description: The Power Service Center provides a development infrastructure, focusing on the development of small, efficient and cost- effective components. The focus lies on the development of new switching technologies by combination of mechanical and semiconductor switches in hybrid switching systems. The lab is in operation since 2005 and covers a range of 120 MVA, 150 kVA (High Current) resp. 1200 kV (High Voltage).
Technical specifications (PDF)
Static Equipment
AIT Low-voltage facility N30

Description: For testing ranging from 0.01 kV to 1.7 kV with performance up to 20 MVA
AIT Low-voltage high current facility NH150

Description: For testing up to 0.7 kV with performance up to 120 MVA and 150 kA RMS
AIT Medium-voltage facility M300

Description: Testing ranging from 2 kV to 40 kV with performance up to 120 MVA
AIT Distributed Generation Laboratory - DG Lab

Description: The main activities of AIT Laboratory are the development of solutions for efficient realization of decentralisation with the focus on "Power Quality and Safety“. With the offered services it is possible to support producers of components, planners as well as operators of plants and supply networks with regard to questions concerning the transition process towards decentralized, distributed supply networks on the basis of renewable energy carriers.

Electric Drive Technologies

Description: The development of new vehicle concepts necessitates detailed information about the electrical, thermal and mechanical characteristics of individual components and entire drives. Thanks to a sophisticated laboratory infrastructure, the Mobility Department of AIT is able to provide this data for all relevant components – from electrical machines and power electronics to electric energy storage systems and entire vehicles. The department also specialises in combining measuring techniques with simulation for demanding Hardware-in-the-Loop tests. As an accredited test centre, the AIT boasts several years experience in the performance of standards testing on technical devices and, as a member of international standards committees, is actively involved in the definition of new testing procedures and standards.
Technical specifications (PDF)

Inverter Testing Laboratory

Description: The state-of-the-art inverter laboratory is equipped with flexible means for grid and photovoltaic simulation and provides a realistic testing environment for evaluating the characteristics of the equipment under a wide range of operating conditions.
Mobile Equipment
AIT 3-Phase Grid Simulator

Description: 3-Phase Grid Simulator 15 kVA
AIT PVAS2-2-800-24-1500

Description: Dual String PV Array Simulator 2×7 kW
AIT PVAS2-1-800-48-3000

Description: Single String PV Array Simulator 1×12 kW
AIT Grid impedance RLC circuit

Description: 1-Phase RLC resonance circuit and grid impedance simulation
LEM Norma D6244

Description: 6-Phase Power Analyzer
Spitzenberger + Spies PAS10000

Description: 4-Quadrant Amplifier 10 kVA
Voltech PM3000A

Description: 3-Phase Power Analyzer
Monitoring Competence Centre

Description: Generator and drive test bench, no load test, short circuit test, load characteristic test, partial discharge monitoring, acoustic noise and vibrations, efficiency, temperature rise test, etc.

PV Module and System Lab

Description: The photovoltaic lab facilities of the Austrian institute of technology are mainly for measuring performance of PV devices and systems. Moreover, equipment for characterizing thermal, mechanical and electrical properties are available. Equipment and devices permit to carry out module lifetime analyses indoor as well as outdoor long-term measurements and investigations on effects of weather and spectral conditions on different PV technologies. With the offered services, including inverter facilities, it is possible to support producers of components, planners as well as operators of plants and supply networks with regard to system performance.
Technical specifications (PDF)
Static Equipment
AIT Electroluminescence imaging

AIT Infrared thermography

Description: Cooled and not cooled systems with 2-5 µm and 8-14 µm detectors
AIT Insulation tests stand

Description: Measurement range: 500 – 5000 V DC
AIT Mechanical load test

Description: Mechanical load test for PV modules
AIT PV inverter test stand

Description: Dedicated test stand for testing Photovoltaic Inverters and charge controller.
Real-Time Simulator

Description: Interfaces with real-elements in order to achieve so called Hardware in the Loop simulation. Capability to achieve hard real-time simulation is crucial to ensure fast computation of EMT (Electromagnetic Transient) simulation of large power system and power electronics devices connected to the grid. Also, some parts of the model should be running with time step in the range of hundred of nanoseconds to manage the stability of closed loop simulation with power amplifier in the loop.
Solar tracker

Description: 2-axial solar tracker for performance tests and NOCT measurements.
Mobile Equipment
Radio spectrometer

Description: High-resolution Spectrometer, appropriate for measuring indoor with pulsed sun simulator as well as outdoor for long term measurements (with special dome).
SimTech-Lab: Real-Time Simulation & Power Hardware in the loop

Description: Research laboratory for integration of distributed energy resources in electricity grids: using real-time simulation of electrical grids and grid components, this laboratory enables deep analysis of new technologies for future energy systems.

Solar Laboratory

Description: Qualification of PV modules according to EN/IEC 61215 Ed. 2
Mobile Equipment
AIT Climatic Chamber 1

Description: Dimensions: 6,0 x 3,2 x 3,0 m (entrance: 2,4 x 2,8 m); Temperatures from – 45 °C to + 60 °C;
AIT Climatic Chamber 2

Description: Dimensions: 3,2 x 2,0 x 2,0 m (entrance: 0,9 x 1,9 m); Temperatures from – 40 °C to + 90 °C; 15 – 95 % relative humidity adjustable depending on the temperature
AIT Climatic chamber 3

Description: Dimensions: 2,4 x 2,4 x 2,4 m; Temperatures from – 40 °C to + 80 °C; UVA and UVB Radiation;
TIRA Climatic Chamber 4

Description: Dimensions: 1,3 x 2,0 x 2,6 m; Temperatures from – 75 °C to + 120 °C; 15 – 95 % relative humidity
TIRA Climatic Chamber 5

Description: Dimensions: 4,1 x 5,8 x 3,1 m; Temperatures from – 40 °C to + 80 °C; 15 – 95 % relative humidity; rain, ice or snow tests
Berger Lichttechnik Pulsed Solar Simulator PSS8

Description: Pulsed Solar Simulator, conforming to the requirements of IEC 60904-9.
AIT Steady state Solar Simulator

Description: Steady state Solar Simulator; illuminated area 6m²
AIT Wet leakage test stand

Description: Test environment for wet-leakage tests of PV modules
Virtual Facilities

SmartEST Sim Lab

AIT’s SmartEST Sim Lab is a simulation-as-a-service platform that is open to the public and can be used free of charge. It provides a web-based co-simulation platform based on mosaik, Docker, JupyterLab and JupyterHub.

Simulation and Optimisation Tools
In the SmartEST the following tools are under use:

  • Multicore Opal-RT Real-Time Simulator (i.e., eMegaSim)
  • Typhoon HIL Real-Time HIL Simulator
  • Mathworks xPC-Target Simulator
  • Power-HIL and Controller-HIL experiments at full power in a closed control loop
  • General simulation tools: Matlab/Simulink, SimPowerSystems, PSpice/Cadence
  • Network simulation tools: DigSILENT PowerFactory, PSAT
  • Communication network simulator: OMNeT++
  • Powerful simulation cluster for complex and large-scale system simulations ICT/automation tools and components
  • SCADA and automations system (highly customizable laboratory automation system, remote control possibilities of laboratory components, visualization and monitoring)
  • Distributed control approaches: IEC 61499/4DIAC
  • Communication methods: IEC 61850, Modbus/SunSpec, OPC/OPC-UA, Industrial Ethernet (Ethernet POWERLINK, Modbus/TCP, etc.)
  • Planning methods, interoperability and compatibility, integration: IEC 61970/61968 (CIM)
  • Network information system
  • Cyber-security assessment methods and tools for Smart Grid systems and components
  • Smart metering testing facility
Standards Compliance
In the SmartEST the following standard compliance is possible:

  • CEI 0-21 Reference technical rules for the connection of active and passive users to the LV electrical utilities
  • DIN VDE V 0124-100 Netzintegration von Erzeugungsanlagen – Niederspannung – Prüfanforderungen an Erzeugungseinheiten vorgesehen zum Anschluss und Parallelbetrieb am Niederspannungsnetz
  • DIN VDE V 0126-1-1 Selbsttätige Schaltstelle zwischen einer netzparallelen Eigenerzeugungsanlage und dem öffentlichen Niederspannungsnetz
  • EN 50438 Anforderungen für den Anschluss von Klein-Generatoren an das öffentliche Niederspannungsnetz
  • EN 50530 Gesamtwirkungsgrad von Photovoltaik-Wechselrichtern
  • EN 61000-3-11 Elektromagnetische Verträglichkeit (EMV) – Teil 3-11: Grenzwerte; Begrenzung von Spannungsänderungen, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs-Versorgungsnetzen; Geräte und Einrichtungen mit einem Bemessungsstrom ≤ 75 A, die einer Sonderanschlussbedingung unterliegen
  • EN 61000-3-12 Elektromagnetische Verträglichkeit (EMV) – Teil 3-12: Grenzwerte für Oberschwingungsströme, verursacht von Geräten und Einrichtungen mit einem Eingangsstrom > 16A und ≤ 75A je Leiter, die zum Anschluss an öffentliche Niederspannungsnetze vorgesehen sind
  • EN 61000-3-2 Elektromagnetische Verträglichkeit (EMV) – Teil 3-2: Grenzwerte – Grenzwerte für Oberschwingungsströme (Geräte-Eingangsstrom ≤ 16 A je Leiter)
  • EN 61000-3-3 Elektromagnetische Verträglichkeit (EMV) – Teil 3-3: Grenzwerte – Begrenzung von Spannungsänderungen, Spannungsschwankungen und Flicker in öffentlichen Niederspannungs-Versorgungsnetzen für Geräte mit einem Bemessungsstrom ≤ 16 A je Leiter, die keiner Sonderanschlussbedingung unterliegen
  • EN 61000-4-11 Elektromagnetische Verträglichkeit (EMV) – Teil 4-11: Prüf- und Messverfahren – Prüfungen der Störfestigkeit gegen Spannungseinbrüche, Kurzzeitunterbrechungen und Spannungsschwankungen
  • EN 61000-4-13 Elektromagnetische Verträglichkeit (EMV) – Teil 4-13: Prüf- und Messverfahren; Prüfungen der Störfestigkeit am Wechselstrom-Netzanschluss gegen Oberschwingungen und Zwischenharmonische einschließlich leitungsgeführter Störgrößen aus der Signalübertragung auf elektrischen Niederspannungsnetzen
  • EN 61683 Photovoltaische Systeme – Stromrichter – Verfahren zu Messung des Wirkungsgrades
  • EN 62116 Photovoltaik-Wechselrichter für den Anschluss an das Stromversorgungsnetz – Prüfverfahren für Massnahmen zur Verhinderung der Inselbildung
  • ER G59/3 Recommendations for the connection of generation plant to the distribution systems of licensed distribution network operators
  • ER G83/2 Recommendations for the connection of small-scale embedded generators (up to 16 A per phase) in parallel with public low-voltage distribution networks
  • FGW Technische Richtlinie 3 Bestimmung der elektrischen Eigenschaften von Erzeugungseinheiten am Mittel-, Hoch- und Höchstspannungsnetz
  • FGW Technische Richtlinie 4 Anforderungen an Modellierung und Validierung von Simulationsmodellen der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen
  • OEVE/OENORM E 8001-4-712 Errichtung von elektrischen Anlagen mit Nennspannungen bis AC 1000 V und DC 1500 V – Teil 4-712: Photovoltaische Energieerzeugungsanlagen – Errichtungs- und Sicherheitsanforderungen
  • VDE-AR-N 4105 Erzeugungsanlagen am Niederspannungsnetz – Technische Mindestanforderungen für Anschluss und Parallelbetrieb von Erzeugungsanlagen am Niederspannungsnetz

In the Power Service Center the following standard compliance is possible:

  • EN 50122-1
  • EN 50124-1
  • EN 50124-2
  • EN 50152-3-3
  • EN 50153
  • EN 60044-3
  • EN 60044-7
  • EN 60044-8
  • EN 60076-1
  • EN 60076-10
  • EN 60076-11
  • EN 60076-2
  • EN 60076-3
  • EN 60076-5
  • EN 60076-6
  • EN 60137
  • EN 60168
  • EN 60214-1
  • EN 60269-1
  • EN 60269-4
  • EN 60269-6
  • EN 60270
  • EN 60282-1
  • EN 60383-1
  • EN 60383-2
  • EN 60529
  • EN 60660
  • EN 60695-2-10
  • EN 60695-2-11
  • EN 60832-1
  • EN 60832-2
  • EN 60898-1
  • EN 60898-2
  • EN 60947-1
  • EN 60947-2
  • EN 60947-3
  • EN 60947-4-1
  • EN 60947-4-2
  • EN 60947-5-1
  • EN 61000-3-2
  • EN 61000-4-11
  • EN 61000-4-5
  • EN 61008-1
  • EN 61008-2-1
  • EN 61009-1
  • EN 61009-2-1
  • EN 61140
  • EN 61180-1
  • EN 61180-2
  • EN 61230
  • EN 61238-1
  • EN 61243-1
  • EN 61243-5
  • EN 61439-1
  • EN 61439-2
  • EN 61439-3
  • EN 61439-4
  • EN 61439-5
  • EN 61869-1
  • EN 61869-2
  • EN 61869-3
  • EN 61869-5
  • EN 62019
  • EN 62208
  • EN 62271-1
  • EN 62271-100
  • EN 62271-102
  • EN 62271-103
  • EN 62271-104
  • EN 62271-105
  • EN 62271-200
  • EN 62271-201
  • EN 62271-202
  • EN 62305-3
  • EN 62423
  • HD 60269-2
  • HD 60269-3
  • IEC 60052 / CEI 60052
  • IEC 60060-1 / CEI 60060-1
  • IEC 60060-2 / CEI 60060-2
  • IEC 60060-3 / CEI 60060-3
  • IEC 60076-11 / CEI 60076-11
  • IEC 60695-11-5 / CEI 60695-11-5
  • IEC 60695-2-12 / CEI 60695-2-12
  • IEC 60695-2-13 / CEI 60695-2-13
  • IEC 61008-2-2 / CEI 61008-2-2
  • IEC 61009-2-2 / CEI 61009-2-2
  • IEC/TR 61641 / CEI/TR 61641
Quality Management
AIT laboratories are certified with the ISO/IEC 17025 and ISO 9001. Additionally, AIT is accredited as testing laboratory by Accrediation Austria (national accreditation body), member of EA. The AIT Power Service Center is an accepted CB Testing Laboratory under the responsibility of OVE as National Certification Body.
Testing Services
In the AIT SmartEST lab the following services are offered (but not limited to):

Smart grid system and DER-oriented expertise and validation/testing activities

  • Integration of DER, standards, national requirements in EU and USA
  • Power Quality (PQ) lab test and field monitoring: impact of DER components including storage on PQ (e.g., harmonics, flicker), impact of PQ disturbances on Distributed Generation (DG) components (e.g., voltage sags, over-voltages)
  • Safety of DER components (research and testing): PV inverters (e.g., DC current, Loss of Main protection) and PV modules
  • Quality and performance of DER components including storage and systems: inverters perfor-mance (e.g. efficiency, MPPT efficiency, de-rating), quality and performance control of PV-modules, performance assessment of PV systems, online monitoring, mutual interference of multiple DERs in distributed power system
  • Qualification testing and conformity assessment of PV and battery inverters and protection de-vices according to diverse national standards and recommendations
  • Energy storage system validation
  • Electric vehicle supply equipment/charging system validation

Smart grid simulation/HIL-based and automation application development/testing activities

  • Experimental real-time simulation platform for advanced Power-HIL and Controller-HIL analysis
  • Distributed/coordinated/central voltage control approaches with many distributed generators across a section of network
  • Validation of energy management systems and distribution SCADA
  • Standard-based controller implementation (e.g., IEC 61850/61499, SunSpec)
  • Interoperability and communication testing

AIT also extended its real-time simulation capabilities. Now, three different types of Digital Real-Time Simulators (DRTS) – OPAL-RT, Typhoon HIL, and PLECS RT Box – are available for performing simulation and HIL-based studies on power networks and power electronics.

The Power Service Center offers the following services :

  • Breaking capacity under operating conditions and in case of short-circuits
  • Resistance to internal arcs
  • Short-time withstand current and peak withstand current tests
  • Temperature-rise tests
  • Operational performance capability
  • Dielectric tests
  • Partial discharge measurements
  • Tripping limits and characteristics
  • Mechanical and electrical endurance
  • Ingress protection
  • Environmental simulation (rain, salt fog, corrosive atmosphere, dust, low temperature and ice, vibration and shock, acoustic measurements)
Recent Publications

Peer-reviewed scientific journals/papers:

Peer-reviewed conference paper:

  • T. Strasser, F. Pröstl Andrén, G. Lauss, R. Bründlinger, H. Brunner, C. Moyo, C. Seitl, S. Rohjans, S. Lehnhoff, P. Palensky, P. Kotsampopoulos, N. Hatziargyriou, G. Arnold, W. Heckmann, E. Jong, M. Verga, G. Franchioni, L. Martini, A. Kosek, O. Gehrke, H. Bindner, F. Coffele, G. Burt, M. Calin, J. Rodríguez-Seco:
    Towards Holistic Power Distribution System Validation and Testing – An Overview and Discussion of Different Possibilities
    Proceedings of CIGRE SESSION 46, paper no. C6-202, 2016.
  • C. Seitl, C. Messner, H. Popp, J. Kathan:
    Emulation of a High Voltage Home Storage Battery System using a Power Hardware-in-the-Loop Approach
    Proceedings of The 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON2016), Florence, Italy, 2016.
  • P. Jonke, J. Stöckl, Z. Miletic, R. Bründlinger, C. Seitl, F. Pröstl Andrén, G. Lauss, T. Strasser:
    Integrated rapid prototyping of distributed energy resources in a real-time validation environment
    Proceedings of 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 714-719, Santa Clara, CA, USA, 2016.
  • A. Veichtlbauer, O. Langthaler, D. Engel, C. Kasberger, F. Pröstl Andrén, T. Strasser:
    Towards applied Security-by-Design for DER units
    Proceedings of 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 2016.
  • F. Pröstl Andrén, T. Strasser, O. Langthaler, A. Veichtlbauer, C. Kasberger, G. Felbauer:
    Open and interoperable ICT solution for integrating distributed energy resources into smart grids
    Proceedings of 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 2016.
  • C. Zanabria, F. Pröstl Andrén, J. Kathan, T. Strasser:
    Towards an integrated development of control applications for multi-functional energy storages
    Proceedings of 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 2016.
  • B. Lundstrom, S. Chakraborty, G. Lauss, R. Bründlinger, R. Conklin:
    Evaluation of System-Integrated Smart Grid Devices using Software- and Hardware-in-the-Loop
    Proceedings of 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 2016.
  • C. Messner, J. Kathan, C. Seitl, S. Hofmüller, R. Bründlinger:
    Efficiency and Effectiveness of PV Home Storage Systems Experiences from laboratory tests of commercial products
    Proceedings of European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Munich, Germany, 2016.
  • C. Gavriluta (AIT), G. Lauss (AIT), T. Strasser (AIT), J. Montoya (IEE), R. Brandl (IEE), P. Kotsampopoulos (NTUA):
    Asynchronous Integration of Real-Time Simulators for HIL-based Validation of Smart Grids
    45th Annual Conference of the IEEE Industrial Electronics Society (IECON), Lisbon, Portugal, (2019).
  • A. van der Meer (TU Delft), R. Bhandia (TU Delft), E. Widl (AIT), K. Heussen (DTU), C. Steinbrink (OFFIS), P. Chodura (DNVGL), T. Strasser (AIT), P. Palensky (TU Delft):
    Towards Scalable FMI-based Co-simulation of Wind Energy Systems Using PowerFactory
    2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, (2019).
  • R. Brandl (IEE), P. Kotsampopoulos (NTUA), G. Lauss (AIT), M. Maniatopoulos (NTUA), M. Nuschke (IEE), J. Montoya (IEE), T. Strasser (AIT), D. Strauss-Mincu (IEE):
    Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies
    2018 IEEE Workshop on Complexity in Engineering (CompEng), Florence, Italy; 2018-10-10 – 2018-10-12; IEEE, (2018), 1 – 6
  • M. Cabiati (RSE), C. Tornelli (RSE), C. Seitl (AIT), T. Strasser (AIT):
    Validating the ELECTRA Web-of-Cell Control Concept – An Overview of Possible Simulation Environment Enhancements
    CIRED Workshop 2018, Ljubljana, Slovenia; 2018-06-07 – 2018-06-08; Paper ID 0119, 4 pages.
  • C. Messner (AIT), C. Seitl (AIT), T. Strasser (AIT), J. Jimeno (TECNALIA), A. Perez-Pasante (TECNALIA), J. Merino (TECNALIA), E. Rodriguez (TECNALIA), J. Hashimoto (AIST):
    Testing of Microgrid Control Systems According to IEEE 2030.8 – Experiences and Learnings from Laboratory Tests
    36th European PV Solar Energy Confernce and Exhibition (EU PVSEC 2019), Marseille, France; 2019-09-09 – 2019-09-13; (2019), ISSN: 2196-100x; Paper ID 5CO.13.4, 6 pages.
  • M. Otte (HAW Hamburg), S. Rohjans (HAW Hamburg), D. Pala (RSE), C Sandroni (RSE), T. Strasser (AIT):
    Multi-Laboratory Cooperation for Validating Microgird and Smart Distribution System Approaches
    CIRED Workshop 2018, Ljubljana, Slovenia; 2018-06-07 – 2018-06-08; (2018), ISSN: 2032-9628; Paper ID 0301, 4 pages.
  • F. Pröstl Andren (AIT), T. Strasser (AIT), J. Le Baut (AIT), M. Rossi (RSE), G. Vigano (RSE), G. Della Croce (SELTA), S. Horsmanheimo (VTT), A. Ghasem Azar (DTU), A. Ibanez (Our New Energy):
    Validating Coordination Schemes between Transmission and Distribution System Operators using a Laboratory-Based Approach
    IEEE PowerTech Milano 2019, Milano, Italien; 2019-06-23 – 2019-06-27; IEEE, 441 (2019), ISBN: 978-1-5386-4722-6; 1 – 6.
  • C. Seitl (AIT), T. Strasser (AIT), M. Maniatopoulos (NTUA), P. Kotsampopoulos (NTUA):
    Time Synchronous Control of Grid- and PV-Emulators for Laboratory Testing within a Co-Simulation Environment
    CIRED Workshop 2018, Ljubljana, Slovenia; 2018-06-07 – 2018-06-08; (2018), ISSN: 2032-9628; Paper ID 0087, 4 pages.
  • T. Strasser (AIT), F. Pröstl Andren (AIT), E. Widl (AIT), G. Lauss (AIT), E. de Jong (DNVGL), M. Calin (DERlab), M. Sosnina (DERlab), A.M. Khavari (DERlab), E. Rodriguez (TECNALIA), P. Kotsampopoulos (NTUA), M. Blank (OFFIS), C. Steinbrink (OFFIS), K. Mäki (VTT), A. Kulmala (VTT), A. van der Meer (TU Delft), R. Bhandia (TU Delft), R. Brandl (IEE), G. Arnold (IEE), C Sandroni (RSE), D. Pala (RSE), D. Morales Bondy (DTU), K. Heussen (DTU), O. Gehrke (DTU), F. Coffele (USTRATH), Q.T. Tran (CEA), E Rikos (CRES), V.H. Nguyen (GINP), I. Orue (Ormazabal), M.Z. Degefa (SINTEF), S. Manikas (HEDNO):
    An Integrated Pan-European Research Infrastructure for Validating Smart Grid Systems
    2018 CIGRE Session 47, Paris, France; 2018-08-26 – 2018-08-31; CIGRE Paris (2018), Paper ID C6-307, 10 pages.
  • M. Stübs (University of Hamburg), P. Dambrauskas (USTRATH), M. Syed (USTRATH), K. Köster (University of Hamburg), H. Federrath (University of Hamburg), G. Burt (USTRATH), T. Strasser (AIT):
    Scalable power system communications emulation with OPC UA
    25th International Conference on Electricity Distribution (CIRED), Madrid, Spain; 2019-06-03 – 2019-06-06; 1978 (2019), 1 – 5.
  • A. van der Meer (TU Delft), C. Steinbrink (TU Delft), K. Heussen (DTU), D. Morales Bondy (DTU), M.Z. Degefa (SINTEF), F. Pröstl Andren (AIT), T. Strasser (AIT), S Lehnhoff (OFFIS), P. Palensky (TU Delft):
    Design of Experiments aided Holistic Testing of Cyber-Physical Energy Systems
    2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), Porto, Portugal; 2018-04-10; (2018), ISBN: 978-1-5386-4103-3; 7 pages.

Conference posters and presentations:

  • T. Strasser, F. Pröstl Andrén, C. Kasberger, G. Felbauer, A. Veichtlbauer, O. Langthaler:
    Open and Interoperable ICT Solution for Integrating Renewables
    Poster of Austrian Smart Grids Week 2016, Linz, Austria, 2016.
  • T. Strasser:
    Is there a need for formalized design and validation methods in integrated energy systems?
    IEEE International Forum Smart Grids for Smart Cities, Paris, France, 2016.
  • T. Strasser:
    Austrian innovative ICT solution with European systems-level validation: OpenNES and ERIGrid
    HubNet Smart Grid Symposium 2016, Glasgow, UK, 2016.
  • T. Strasser, G. Lauss:
    Holistic Power Distribution System Validation and Testing – The Role of Digital Real-Time Simulation Systems
    RTDS European User’s Group Meeting 2016, Glasgow, UK, 2016.
  • C. Seitl, G. Lauss:
    A PHIL simulation setup for characterizations on battery storage / grid connected inverter
    International OPAL-RT User Conference (RT16), Munich, Germany, 2016.
  • R. Bründlinger:
    Review and Assessment of Latest Grid Code Developments in Europe and Selected International Markets with Respect to High Penetration PV
    6th Solar Integration Workshop, Vienna, Austria, 2016.


  • R. Bründlinger:
    Compliance testing of Smart Grid functions
    6th Solar Integration Workshop (SIW2016) – Solar Tutorial “PV Systems in Smart Grids”, Vienna, Austria, 2016.
  • F. Pröstl Andrén, R. Bründlinger, T. Strasser:
    Remote control of smart inverters in an interoperable environment
    6th Solar Integration Workshop (SIW2016) – Solar Tutorial “PV Systems in Smart Grids”, Vienna, Austria, 2016.

last updated: 23.10.2019

Austrian Institute of Technology (AIT)